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Abstract 
 

The stress distribution for the fiber-matrix interphase push-out test is derived.  The 
analytical solution provides the mechanics foundation to relate experimental 
measurements to the properties of the interphase. The shear-lag model incorporates a 
discrete interphase region quantified by the thickness and shear modulus of the 
interphase. Except for the basic shear-lag model assumptions, the method follows a 
rigorous mathematical approach.  Accuracy of the analytical solution is assessed using 
finite element analysis. The data reduction scheme enables the interphase strength and 
shear modulus to be determined from load-deformation response of the specimen. 

 
1. Introduction 
 
The material immediately surrounding the fiber can be significantly different from 

the bulk matrix [1–4].  This thin-layer of material is called the fiber-matrix interphase.  
The properties and microstructure of the interphase material govern the load transfer 
between the composite constituents.  The fiber-matrix interphase has significant influence 
on the structural integrity of fibrous composites.  This has led to numerous efforts in both 
the experimental characterization and micro-mechanical analysis of the interphase 
subjected to different loading conditions.   

 
The traditional methods for predicting the stress distribution in the fiber matrix 

region are shear-lag theory [5–8] and finite element analysis (FEA) [9–11].  Most studies 
neglect the interphase because the properties and dimensions are unknown. Hence the 
presence of the interphase is commonly replaced by an interface between the fiber and 
the matrix.  Recently, experimental efforts [12&13] have been conducted to characterize 
the interphase properties and its effects on the macroscopic properties of the composite. 

 
The aim of the present work is to develop an analytical based mechanics solution 

that can be used as the data reduction procedure for the fiber push-out experiment to 
evaluate the fiber-matrix interphase properties.  Based on shear-lag theory, the interphase 
is assumed to be a uniformly thin layer surrounding the fiber having constant stiffness.  
The interphase shear strain was derived as a function of the experimentally measured 
quantities (i.e. applied load and measured displacement) from the push-out test.  In 



 

 2

addition to the analytical solution, a finite element model (FEM) for the push-out test is 
developed and compared to the theoretical predictions.   

 
2. Theory 

 
In this section, an analytical model is presented.  Based on the governing equations 

and the shear-lag assumptions, the displacements in each region of the domains are 
derived.  In the specimen, there are three axially symmetric regions (as shown in Figure 
1):  fiber, matrix and the interphase between the fiber and the matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Specimen geometry and boundary conditions for the fiber push-out test   
 

 
 A single fiber composite of thickness h, is surrounded by an interphase of 

thickness ti and supported by an annulus of radius rm.  A schematic diagram of the 
unloaded and loaded cases of this fiber push-out configuration is given in Figure 1.  The 
displacement w1

Top and distance z are taken from the top surface.  It is assumed that the 
fiber is rigid, carries only axial load and has a displacement of w1.  The matrix and 
interphase are assumed to undergo shear deformation only.  It is assumed that the fiber, 
matrix, and interphase are perfectly bonded together.  Consequently, no relative sliding 
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between the materials is allowed.  The displacement of the interphase at r = ri is defined 
as w2.  Outside the matrix cylinder, r=rm, the boundary is assumed fixed. 

 
The force balance equation can be presented in fiber and matrix regions as,  

       

mmii rrr τ=τ=τ ,   
r
r

r
r mmii τ

=
τ

=τ  

  
i

o
i hr2

P 
π

=τ ,         
m

o
m hr2

P 
π

=τ       (1) 

where the r stands for radius, Po is the applied force, h is the specimen height and 
subscripts f, i and m stand for fiber, interphase and matrix, respectively. 

 
The basic governing differential equation is given by: 

dr
G

dw τ
=           (2) 

In the interphase and matrix regions, the displacements are solved from equation 2 

as,  

 r f < r < r i : 

   1i
i

i
i Crlnr

G
w +

τ
=      (3) 

r i < r < r m : 

2m
m

m
m Crlnr

G
w +

τ
=       (4) 

By applying the boundary condition wm = 0 at r = rm, the constant C2 can be 

obtained: 

mm
m

m
2 rlnr

G
C τ

−=       (5)  

Substitution of Equation 5 into Equation 4 gives the expression for deflection in the 

matrix:  

m
m

m

m
m r

rlnr
G

w τ
=          (6) 

Along the interface between the interphase and matrix (axial direction), the 
displacement is continuous (i.e. wi = wm at r = ri).  Using this condition allows one to 
solve for C1.  The deflection in the interphase is: 
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m
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rlnr
G

w τ
+

τ
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For data reduction purposes, the interphase shear stain γi needs to be expressed in 
terms of the load (Po) and displacement applied to the top of the fiber (w1(z=0)).  This 
deflection is designated w1

Top in Figure 1. From Equation 7, and by considering wi = w1 
at r = rf, the interface displacement and the general form of interphase shear strain are 
given by:    
 

   
m
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m

i

f
ii1 r
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rlnrw τ
+γ=       (8) 
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However, w1 and γi vary from point to point along the axial direction.  It is necessary 
to consider the variation in the axial (z) direction.  The axial stress is a maximum at the 
point of load introduction and is equal to Po/πrf

2. By definition, 

 
dz

dw1=ε  (10) 

Therefore, since, 2
ff rA π= , we have, 

 
dz

dwrEF 12
ff π=  (11) 

 
Force Balance yields the following differential equations for the interphase and matrix: 

 
0r2

dz
dF

0r2
dz
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mm

ii

=τπ+

=τπ+
 (12) 

 
Substituting into Equation 11 yields: 
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Substituting Equations 8 and 9 into Equation 13 yields: 
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For simplicity, we manipulate Equation 14 into the form of 

    0wa
dz

wd
1

2
2

1
2

=−       (15) 

where 

    ( )( )
( )
( )fim

mii

fi
2
ffi2

rrlnG
rrlnG1

rrlnrEG2a
−

=  

 

By solving Equation 15, we have 

    

    ( ) ( )az sinhCaz coshCw 541 +=     (16) 

 

The boundary conditions along the axial direction are, 

  
0

dz
dw     0,P        ,hz

dz
dwrE-PP        , 0z

1

12
ffo

===

π===
     (17) 

 
Combining Equations 16 and 17 and solving for the unknown coefficients yields the 
generalized expression for w1: 
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( ) ( ) ( ) ( )[ ]azsinhazcoshahcoth
aEr

Pzw
f

2
f

o
1 +−

π
−

=    (18) 

 
 
The solution given by Equation 18 is the displacement of the interface between the fiber 
and the interphase (i.e. r=rf).   
 

For the special case z=0, Equation 18 becomes the top displacement at the fiber-
interphase interface, 
 

   ( ) ( )ahcoth
aEr

Pw0zw
f

2
f

oTop
11 π

===      (19) 

 
In the fiber push-out test, the w1

Top is measured directly using a displacement sensor 
and is therefore a useful parameter in the data reduction procedure.  By considering 
equation 9 and after some mathematical manipulation, the interphase shear strain can be 
explicitly expressed in terms of w1(z) and w1

Top as,     
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  (20) 

 

 Equation 20 shows that the shear strain is directly proportional to the amplitude of 
the applied displacement.  In addition, the distribution of the shear strain in the axial 
direction follows the function w1(z).  This function is presented in Equation 18 where w1 
at the location of load introduction is much higher than the value at the bottom of the 
sample.  For materials characterization this gradient can be minimized by specimen 
design but can not be eliminated.  An average displacement w1 in the axial direction can 
be defined in an integral form as 
 

     ( ) ( )∫=
h

o
11 zw

h
1zw       (21) 

 
where h is the test sample thickness. 
  
 For data reduction purposes, an average shear strain is derived to define the 
effective interphase shear modulus.  This interphase shear modulus is defined as the 
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proportionality constant relating average shear stress (Equation 1) to the average shear 
strain in the interphase.  By definition of average value and combining Equation 20 and 
21, we express the average interphase shear strain in integral form as, 
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 (22) 

 
Finally, we can obtain the interphase shear modulus in terms of average shear strain and 

the experimentally measured parameters of applied load and displacement. 

           

   ( ) ( )( )
π
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fii
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It should be mentioned that because the parameter a (in Equation 15) contains the 
interphase shear modulus Gi, the Equation 23 is implicit and requires an iterative 
solution.  The ratio of load Po vs. the top displacement w1

Top represents the linear slope of 
the loading-displacement diagram recorded from the test.  In the experimental data 
reduction, the specimen geometric size and the material properties of fiber and matrix are 
assumed to be known constants.  An assumed initial value is needed for the interphase 
shear modulus Gi to iterate and converge to a unique value.  
 
3.  Finite Element Approach  
 

As a verification of the closed form data reduction analysis, a finite element model 
(FEM) of the fiber push-out test is developed to correlate with the analytical approach.  
The FEM addresses all the concerns noted in the analytical solution.  The geometry of the 
fiber push-out model is the same as in Figure 1.  An axisymmetric model is defined with r 
as the radial coordinate with origin at the fiber central axis and z as the axial coordinate 
origin at the top of the model.  The radii of the fiber, interphase, and out edge of the 
matrix are rf, ri, and rm, respectively.  The model thickness in the axial direction is 
denoted by h. 
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The commercially available finite element code ABAQUS (Hibbitt, Karlsson, and 
Sorenson, Inc.) [14] was used for FEM analysis.  The fiber push-out model was modeled 
with a first-order axisymmetric isoparametric element.  The fiber and interphase and 
matrix materials were assumed to be isotropic and linear elastic.  The top and bottom 
regions of the model were densely meshed because of the stress singularity near the free 
edges.  Because the interphase thickness is very small compared with the fiber radius, the 
total number of elements in the model is relatively large (30,000 elements were used.).  In 
the simulation, a known interphase modulus is specified.  The push-out load, Po, was 
applied and the top displacement, w1

Top, was generated from the numerical model.  Using 
these values in the data reduction scheme for Po/w1

Top in Equation 23, the resulting 
interphase shear modulus is calculated and should be equal to the interphase modulus Gi 
used in the FEM.  Deviations from the known properties is our metric to evaluate the 
accuracy of the data reduction procedure for this numerical experiment. The Glass 
fiber/Epoxy and Glass fiber/Vinyl ester matrix composites were used in the correlation 
studies.  The interphase displacement, shear strain and shear stress are examined and 
compared for both approaches.   The details of the fiber-matrix property used in the 
model are listed in Table 1.  
 

 
 

Property Glass Fiber/Epoxy Glass Fiber/Vinyl Ester 
Elastic Modulus – Fiber 72.6 GPa 72.6 GPa 

Elastic Modulus – Matrix 2.4 GPa 3.4 GPa 
Elastic Modulus - Interphase 246 MPa 250 MPa 

Fiber Diameter, 2rf 20 µm 17 µm 
Matrix Radius rm 25 µm 25 µm 

Interphase Thickness, (ri-rf) 0.07 µm 0.12 µm 
Sample Thickness, h 83 µm 150 µm 

 
Table1. Composite Material Properties 

    
 

From the analytical derivation and Equation 18, it is seen that the displacement w1 
is a critical parameter in the data reduction.  Since w1 varies from place to place along the 
z direction it’s impossible to measure every point.  W1(z=0) is a measurable value in the 
experiment, while an average w1(z) is directly related to interphase shear strain γi.  The 
FEM simulation for the w1 is conducted and compared with the analytical solution 
(Equation 18).  The glass fiber/epoxy matrix composite was used in this comparison.  
Figure 2 shows the distributions for w1(z) as the function of the axial location z from both 
analytical and FEM results.  It is noted that the top displacement is more than double the 
displacement at the bottom of the specimen in this example.  Although the analytical 
solution cannot capture the values near the top interface area due to free edge effects, the 
interior displacement values are very close to the FEA result. 
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Figure 2.  The displacement w1 distribution for Glass fiber/Epoxy composite along the 
interface 
 

The interphase shear strain dominants the interphase deformation.  Due to the free 
edge singularity effect, the shear strain also varies dramatically near the bottom and top 
edges.  The shear strain distributions along the interface from the FEA and analytical 
solution Equation (20) are plotted in Figure 3.  It is seen that except for the free edges the 
analytical solution fits the FEA prediction very well.  In terms of average value, the 
analytical strain is 2.5% higher than the averaged FEA results.     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The shear strain distribution for Glass fiber/Epoxy composite along the 
interface
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 Figure 4 shows the interphase shear stress along the interface axial direction 
variations for FEA and analytical solution.  The shear stress distribution is in good 
agreement in the interior and deviates at the free edges.   The average shear stress of the 
distribution is equal to the applied load divided by the shear area.  For this specimen 
geometry, the shear stress varies by a factor of two over the specimen thickness. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  The shear stress distribution for Glass fiber/Epoxy composite along the 
interface 
 
 
 
4.  Parametric Study, Comparison and Discussion 
 

A wide range of interphase shear moduli were considered in this parametric study 
(0.96 MPa to 246 MPa). Table 2 summarizes the results for the analytical and numerical 
models. One observes that the errors are reduced as the interphase becomes less stiff (i.e. 
Gm/Gi increases).  The maximum error for interphase shear modulus is <2% in the case of 
high interphase stiffness.  The range of moduli considered is quite realistic for the 
glass/epoxy composite.  Using material properties and geometry in Table 1 and published 
load-displacement diagram from [12], the average interphase shear modulus obtained 
from Equation 23 was 25 MPa.  Based on the results presented in Table 2, the data 
reduction should be accurate within 2%. 
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 Analytical Model FEA 
 

τ 
(Pa) γ Gi 

(MPa) 
τ 

(Pa) γ Gi 
(MPa) 

%100*
G

G
FEA
i

Anal
i

 
Gm/Gi =3.9 
Gi=245 MPa 159 6.355e-7 250 159 6.346e-7 246 102 % 

Gm/Gi =10 
Gi=96.2 MPa 159 1.630e-6 96.3 159 1.65e-6 96.4 101 % 

Gm/Gi =100 
Gi=9.62 MPa 159 1.651e-5 9.63 159 1.65e-5 9.64 100 % 

Gm/Gi =1000 
Gi=0.962 MPa 159 1.652e-4 0.963 159 1.65e-4 0.964 100 % 

 
Table 2.  Accuracy of the Analytic Solution versus FEA for a wide range of interphase 
moduli     
 

The analytical model equations can be studied further to determine the effect of 
varying certain parameters on the calculated values.  The variability of the interphase 
modulus, Gi will be investigated as a function of interphase thickness and the slope of the 
load-displacement curve.  One of the important inputs into the analytical model is the 
interphase thickness value.  This had been estimated in the past through swelling theory 
or estimation of sizing thickness present on the fiber.  Equation 23 was used to determine 
the effect of interphase thickness on the calculated Gm/Gi value for a given system as a 
function of Po/w1

Top.  The parametric study was performed using a glass fiber reinforced 
vinyl ester composite system, shown in Table 1, with an rm=32.5µm.  An iterative 
program was written to determine the Gm/Gi values over a range of Po/w1

Top.  The 
program is necessary due to the interdependence of the equation on Gm/Gi.  It is first 
necessary to choose a Gm/Gi value, perform the calculations, compare and then chose a 
new value and iterate until the values match.  The results of these calculations are shown 
graphically in Figure 5.   
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Figure 5. Effect of Interphase Thickness on Gm/Gi for a given Po/W1

Top (Glass Fiber 
Reinforced Vinyl Ester System). 
 

The figure highlights the importance of the correct estimation of the interphase 
thickness.  As the interphase thickness increases, the Gm/Gi value decreases dramatically 
for a given Po/w1

Top value.  Typically the interphase modulus is not greater than the 
matrix modulus therefore the minimum values in Figure 5 are plotted are for Gm/Gi ≥ 1.  
The maximum value of Gm/Gi =1000 was arbitrarily chosen as an approximate Gm/Gi 
ratio for rubber-like properties of the interphase.  Alternatively, if one considers the low 
range of Gm/Gi values, one finds that the stiffness (Po/w1

Top) increases dramatically as the 
interphase thickness decreases. 
 

Experimentally, the value of Po/w1
Top typically has a variability of about ±0.01 

N/µm.  This amount of variation would not have much effect on the Gm/Gi value of large 
interphases, but would have a significant effect on those with small interphases.  For 
example, for a sample that exhibited a Po/W1

Top of 0.1±0.01, this would lead to a Gm/Gi 
range of 2521 to 1832 for an interphase thickness of 30 nm and a range of 106 to 77 for 
an interphase thickness of 750 nm.  Assuming a matrix modulus of 1.31 GPa, this 
converts to an interphase modulus range of 0.52 to 0.71 MPa for the 30 nm interphase 
thickness and a range of 12.3 to 16.9 MPa for an interphase thickness of 750 nm.   
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5. Conclusions 
 

An implicit analytical solution was developed to characterize the fiber-matrix 
interphase mechanical properties for the fiber-matrix push-out test.  The interphase shear 
modulus can be expressed in terms of known fiber-matrix properties and push-out test 
measurable load-deflection curve Po/w1

Top.  The FEA model was developed for 
correlation study with the analytical solution. The glass fiber epoxy matrix composite 
was studied as an example for comparison and the glass fiber vinyl ester matrix 
composite was used for parametric study.  The satisfactory comparison results for the 
interphase displacement, shear strain and shear stress were obtained.  Given typically 
available experiment data such as Po/w1

Top, the interphase shear modulus can be uniquely 
determined.  A parametric study, using the analytical model, showed that the interphase 
thickness value has a significant effect on the calculated interphase shear modulus.  More 
significantly, the approach can be extended to the strain rate dependent interphase 
characterization of the fiber-matrix push-out test, which is partially conducted in 
references [12] and [13].  
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